0=-16t^2+112t+5

Simple and best practice solution for 0=-16t^2+112t+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+112t+5 equation:



0=-16t^2+112t+5
We move all terms to the left:
0-(-16t^2+112t+5)=0
We add all the numbers together, and all the variables
-(-16t^2+112t+5)=0
We get rid of parentheses
16t^2-112t-5=0
a = 16; b = -112; c = -5;
Δ = b2-4ac
Δ = -1122-4·16·(-5)
Δ = 12864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12864}=\sqrt{64*201}=\sqrt{64}*\sqrt{201}=8\sqrt{201}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-112)-8\sqrt{201}}{2*16}=\frac{112-8\sqrt{201}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-112)+8\sqrt{201}}{2*16}=\frac{112+8\sqrt{201}}{32} $

See similar equations:

| -14x+6=54 | | g-12=23 | | 14x+6=54 | | f^2-22=0 | | 14x-33=37 | | -8s-1=-6s-5 | | y^2=-83 | | -2(x+5)^2+2=0 | | s^2+4=-92 | | 475.74=180+1.06x | | 0,5x2+24x=0 | | d^2+7=0 | | 7k+9=51 | | 10x+7)=−3x-12 | | 2x-65+3x=145 | | m^2=-31 | | -(-6x+7)-4x+6=3x-18-(x+12) | | (7x-8)=125 | | 3-3g=-7+1g | | 6(x+19)=1032 | | 68+62+x=180 | | q-51/7=5 | | (3x+10)+67+61=180 | | 5x-1+5x=13+8x | | 3b-2=5b+12 | | (4x+6)=(3x+13) | | v=1/33.14(24)14 | | 3(x+6)=28 | | (n-10)=64 | | 2(x-10)=22 | | 9+k=-18 | | x/12=3= |

Equations solver categories